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New bichromophoric-2,2 0-bipyridines:
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‘Sciences Chimiques de Rennes’, UMR 6226-CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France

Received 1 December 2006; accepted 11 December 2006
Available online 4 January 2007
Abstract—The synthesis and characterization of new unsymmetrically substituted bipyridyl-based chromophores featuring p-con-
jugated donor, acceptor or photoisomerizable backbones are reported. Their absorption and emission properties are discussed in
comparison to those of the parent ligands.
� 2006 Elsevier Ltd. All rights reserved.
2,2 0-Bipyridines are ubiquitous chelating ligands in
coordination chemistry, and the resulting metal com-
plexes have been intensively studied for their chemical,
electrochemical and optical properties.1 Another interest
is their uses as building blocks for the construction of
efficient molecular and macromolecular nonlinear opti-
cal (NLO) chromophores.2–5 During the last decade,
our group has mainly been concerned with the NLO
properties of octupolar tris(4,4 0-p-donor substituted-
2,2 0-bipyridine) metal complexes in which intra-ligand
charge transfer transitions (ILCT) mainly contribute
to the NLO response.6 In this respect, we have devel-
oped several methods for the preparation of symmetrical
bipyridines featuring a variety of p-donor conjugated
substituents such as p-dibutylaminostyryl (1)7 and very
recently the photoisomerizable p-dibutylaminophenyl-
azostyryl group (2).8 In order to design octupolar
NLO-phores in which the NLO activity would be
associated with only metal-to-ligand charge transfer
transitions (MLCT), we also reported the synthesis of
bipyridine 3 bearing the strong electron-accepting
p-nitrostyryl substituent (Scheme 1).7 Unfortunately,
attempts to prepare the corresponding metal complexes
were unsuccessful due to the very poor solubility of 3 in
common organic solvents. Continuing our work toward
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chromophores based on functionalized bipyridyl
ligands, we sought to prepare unsymmetrical bipyridines
incorporating electron donor (D) and acceptor (A) moi-
eties. With such type of ‘push–pull’ bichromophoric
molecule, it might be possible to design a novel class
of D3 octupolar fac-tris(bipyridine) metal complexes
with alternating D and A groups. In this Letter we
report the synthesis and optical properties of the first
example of such D-bpy-A chromophore (4), in which
p-dibutylaminostyryl and p-nitrostyryl substituents are
the donor and acceptor parts, respectively. By using
the same strategy, we also describe the preparation of
another interesting unsymmetrically disubstituted
bipyridine (5) containing on one side a fluorophore
and on the other side a photoisomerizable azobenzene
group.

Scheme 2 depicts the synthetic pathways we used to
prepare the key intermediate 9. This compound was
obtained in 64% overall yield by using a four-step
synthesis. The first step involved the deprotonation
of 4,4 0-dimethyl-2,2 0-bipyridine with 1 equiv of LDA
followed by addition of p-dibutylaminobenzaldehyde,
giving rise to 6 in quantitative yield. The trimethylsilyl
derivative 7 was prepared by addition of another equiv-
alent of LDA followed by trapping the resulting anion
with TMSCl. The bromomethyl derivative 8 was then
produced in high yield (92%) by using the procedure
already described to prepare 4,4 0-bis(bromomethyl)-
2,2 0-bipyridine.9 Finally the phosphonate derivative 9
was synthesized in good yield (80%) by means of an
Arbuzov reaction.6,10
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Scheme 1. Structures of bichromophoric bipyridines 4, 5 and of the parent ligands 1–3.
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Scheme 2. Reagents and conditions: (i) LDA (1.1 equiv), THF, �78 �C; (ii) p-dibutylaminobenzaldehyde, THF, �78 �C, 1 h; (iii) H2O, rt, 97%; (iv)
LDA (2.2 equiv), 20 min, �78 �C; (v) Me3SiCl (1 equiv), �78 �C, 2 min followed by EtOH (10 ml), 90%; (vi) C2Br2F4 (3.8 equiv), DMF, rt, 10 min
followed by CsF (4 equiv), 20 min, 92% and (vii) P(OEt)3 (15 equiv), CHCl3, reflux, 3 h; PPTS (0.1 equiv), reflux, 3 h, 80%.
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The synthesis of unsymmetrically substituted ligands 4
and 5 is shown in Scheme 3. They were prepared in
excellent yield by means of a Wadsworth–Emmons reac-
tion between synthon 9 and the corresponding benzalde-
hyde derivatives. Their structures were unambiguously
confirmed by 1H NMR spectroscopy.11,12 In particular,
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Scheme 3. Synthesis of ligands 4 and 5.

Table 1. Photophysical data (absorption and emission)a

Compound kabs (nm) e (L mol�1 cm�1) kem

(nm)
Stokes
shift (nm)

1 401 65,000 497 97
3 480 76,500 —b —
4 400 30,200 495 95
5 408, 470 (sh) 43,000 502 94

a Performed at 298 K in diluted dichloromethane solution (ca. 10�5–
10�6 mol L�1).

b Non emissive.
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they display two different AB systems for the vinylic
protons with typical coupling constants (3JHH � 16 Hz)
for all-trans (E) isomers.

The UV–visible and emission spectra of ligands 4 and 5
have been measured in dichloromethane and the results
are presented in Table 1 and Figures 1 and 2. The
spectra feature intense p–p* transitions in the UV region
together with broad charge transfer bands in the visible
region. In the visible, the absorption spectrum of 4 is
almost similar to that of 1, except the molar absorptivity
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Figure 1. UV–visible absorption spectra of 1, 2, 4 and 5 in CH2Cl2 at room
which is half. Similarly, the emission maximum of 4 is
observed at the same wavelength as that of 1, showing
that the emission occurs only from the p-dibutylamino-
styryl pyridine sub-chromophore. These observations
indicate that there is no electronic interaction between
the donor and acceptor moieties, as expected by their
meta-arrangements with respect to the 2,2 0-bipyridine
bridge. Bipyridine 5 exhibits an intense broad band with
kmax at 408 nm and a shoulder at ca. 470 nm. A compari-
son with the optical data of 1 and 3 clearly shows that
the absorption spectrum of 5 consists in the overlap of
the absorptions of the two different sub-chromophoric
units. Like compounds 1 and 4, 5 exhibits a structureless
fluorescence band at ca. 500 nm, and the excitation spec-
trum (kexc = 395 nm) closely matches the absorption
spectrum of 1 (Fig. 2).

In conclusion, we have prepared two new bipyridine
chromophores by using a stepwise functionalization of
4,4 0-dimethyl-2,2 0-bipyridine, a methodology which
could provide access to a family of unsymmetrically
substituted bipyridines. The use of these ligands for
the construction of new octupolar metal NLO-phores
is under investigation.
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Figure 2. Normalized emission spectra of 1, 4 and 5 upon excitation at 400 nm in CH2Cl2 at room temperature (right); excitation spectrum of 4 (left).
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